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A study has been made of the possibility of controlling the aerodynamic characteristics of airfoils with the use
of local pulse-periodic energy supply to the flow near the contour of the airfoil in transonic modes of flight.
The influence of energy supply of different intensity to the supersonic region on the structure of the flow and
the wave resistance of the airfoil has been studied based on mathematical modeling. The flow is modeled
based on the two-dimensional unsteady equations of gas dynamics.

At present, progress in the development of aeronautical engineering is impossible without using new technolo-
gies. These include the use of modern facilities of energy supply (laser and microwave radiation, electric charge) to
control the aerodynamic characteristics of airfoils, in particular, to decrease wave resistance, which can enable one to
make further advances in investigating the region of higher flying speeds with preservation of a high aerodynamic ef-
ficiency.

The transonic range of flow about the airfoils remains the least understood field of aerodynamics. The main
effort of researchers went into the designing of such configurations in the case of flow about which the occurrence of
a supersonic zone is delayed (as far as the Mach number of the incoming flow is concerned) and/or the intensity of a
closing compression shock becomes weaker. These configurations include supercritical airfoils of the first and second
generation (for example, those created at the Central Aero-Hydrodynamics Institute) the possibilities of improving
which have, apparently, been exhausted [1–4].

The issues of the action of local energy supply on the structure of gas flow have been studied by G. G.
Chernyi, V. A. Levin, P. Yu. Georgievskii, P. K. Tret’yakov, V. P. Zamuraev, A. F. Latypov, and others (see [5–10]).
The analysis of the experimental and calculated results given in these works shows that one can substantially change
the structure of supersonic flow up to its cardinal transformation with a relatively low consumption of energy. The
transonic range of speeds has been covered only in the work of A. S. Yuriev et al. ([11]), in which the influence of
the energy supply to the local supersonic zone angle above a symmetric airfoil at the zero angle of attack is studied
numerically within the framework of the steady-state problem, and in [12] in which the fundamental possibilities of
controlling both the local and integral characteristics of airfoils in transonic modes of flow with the use of pulse-peri-
odic energy supply have been shown within the framework of the unsteady problem.

Formulation of the Problem. As a mathematical model of flow we employ the system of two-dimensional
unsteady equations of gas dynamics, i.e., we solve the Euler equations in conservative form for a gas with a constant
adiabatic exponent:

∂U ⁄ ∂t + ∂F ⁄ ∂x + ∂G ⁄ ∂y = Q ,

U = (ρ, ρu, ρv, e) ,   F = (ρu, p + ρu
2
, ρuv, u (p + e)) ,   G = (ρv, ρuv, p + ρv

2
, v (p + e)) ,   Q = (0, 0, 0, q) .

For the gas model in question we have

p = (γ − 1) (e − ρ (u2
 + v

2) ⁄ 2) ,   a2
 = γp ⁄ ρ .
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In pulse-periodic energy supply, the quantity q is determined by the expression

q = ∆p ⁄ (γ − 1) f (t) ,   f (t) =  ∑ 
i

 δ (t − i∆t) .

The system of equations is supplemented with the boundary conditions at the boundaries of a doubly con-
nected computational region which represents a rectangle with the internal boundary corresponding to the contour of
the NACA-0012 airfoil. The conditions of an unperturbed flow are set at the left-hand, upper, and lower boundaries,
"soft conditions" are set at the right-hand boundary, and the nonflow condition is set on the contour of the airfoil.

The computational grid in the physical region is geometrically adaptive to the contour of the airfoil and is
bunched in its vicinity; it is rectangular in the canonical region. The number of computational nodes is 352 × 320. We
employ the finite-volume scheme diminishing the total variation (Total-Variation-Diminishing Scheme, or TVD recon-
struction) at the intervals between the instants of energy supply to find the numerical solution. Time integration is car-
ried out according to the Runge–Kutta method of third order. The pulse energy supply is so rapid each time that
changes in the density of the gas and in its velocity over a very short period of time are considered to be negligibly
small. The density of the gas energy in the zone of its supply increases by a prescribed value (in the calculations, the
density of the supplied energy is taken to be constant and equal to ∆E ⁄ ∆S). The initial distribution of the parameters
which corresponds to the steady-state flow about the airfoil without energy supply has been obtained with an absolute
error of 10−4 for simple variables (ρ, u, v, p) at all the grid nodes. With the beginning of energy supply and until the
periodic solution is obtained, the unsteady problem is solved with the same accuracy.

Test Calculations. We have carried out test calculations evaluating the error of computation of the coefficient
of resistance of the airfoil for the values (indicated in Table 1) of the Mach number of the incoming flow, the dimen-
sions of the computational region, and the number of computational nodes.

When M0 = 0.70, the flow is subsonic everywhere. In this connection, the value of the aerodynamic resistance
Cx = 0.003 obtained in variant 6 can be used as the estimate of the accuracy of the method. Successive duplication of
the number of computational nodes in each direction yields a monotone decrease in the error (variants 4, 5, and 6).
Extension of the computational region for a fixed number of nodes leads to an error growth (equivalently to a de-
crease in the number of nodes for a fixed region, variants 5 and 7). As the Mach number decreases, the computational
error grows (DM0

−2, variants 1, 2, and 3). Shock waves, where the order of the accuracy of calculating the flow de-
creases, are formed in the flow when M0 = 0.85. Therefore, it has been assumed that the aerodynamic resistance is
overstated by ∆Cx = 0.003 in the calculations. The corresponding relative error of computation of the coefficient of
resistance for variant 10 amounts to D7%.

Results of the Calculations. The results have been obtained for an ideal gas at γ = 1.4 for M∞ = 0.85 and
the zero angle of attack of the airfoil with a fixed position of the zones of energy supply and different values of the

TABLE 1. Coefficient of Resistance of the Airfoil as a Function of the Mach Number, the Dimensions of the Computational
Region, and the Number of Grid Nodes

No. of the variant
of calculation

M0 Nx × Ny Lx × Ly Cx

1 0.50 88×80 7×8 0.0172

2 0.50 176×160 7×8 0.0082

3 0.50 176×160 13×16 0.0148

4 0.70 88×80 7×8 0.0122

5 0.70 176×160 7×8 0.0059

6 0.70 352×320 7×8 0.0030

7 0.70 176×160 13×16 0.0103

8 0.85 88×80 7×8 0.0501

9 0.85 176×160 7×8 0.0468
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supplied energy for the period ∆t = 0.5. In all the variants considered below, the zones of energy supply are located
in supersonic regions ahead of the compression shocks in steady-state flow.

Figure 1 gives the isolines of pressure of the initial steady-state flow and periodic flow with an energy supply
of ∆E = 0.03 at the instant of time just before the supply of an energy "pulse." A fractal structure of the lines of the
level, which reflects the pulse-periodic character of energy supply (the energy-supply zones are tetragons located sym-
metrically at the top and at the bottom near the airfoil) is observed in Fig. 1b. For the same variant of calculation Fig.
2 gives the evolution of the structure of flow about the airfoil: the pressure isolines are shown at time intervals of
0.01∆t and 0.05∆t respectively after the next energy supply. In Fig. 2a, the pressure behind the shock wave resulting
from the energy supply and propagating in the flow attains a value of C of higher than 1.5.

The distribution of the pressure coefficient over the chord of the airfoil in the case of flow without supply
(curve 1) and with an energy supply of ∆E = 0.01, 0.03, and 0.1 (curves 2, 3, and 4) is given in Fig. 3. Curves 2–4
are constructed for the periodic solution at the instant of time just before the energy supply. In the variant with ∆E =
0.01, we observe a decrease in the dimensions of the supersonic zone, forward displacement of the compression shock
with it adjoining the zone of energy supply, and a decrease in the intensity of the compression shock, leading to a
decrease in the pressure behind it. Both these factors determine a decrease in the wave resistance of the airfoil. Figure
4 gives a close-up view of the distribution of the pressure isolines in the vicinity of the compression shock for curve
2 in Fig. 3; this distribution is illustrated by the changes noted in the structure of the flow in energy supply (the en-

Fig. 1. Isolines of pressure of the steady-state flow about the airfoil without
energy supply (a) and with energy supply (b).

Fig. 2. Pressure isolines for the instants of time: a) t = 0.01 and b) t = 0.05
from the beginning of energy supply.
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ergy-supply zones are tetragons located near the contour of the airfoil symmetrically to its chord). In the absence of
energy supply, the position of the compression shock corresponds to x = 3.75; its abscissa is equal to 3.70 for the
flow presented in Fig. 4. The mode of flow about the airfoil with ∆E = 0.03 is characterized by an even larger up-
stream displacement of the main supersonic zone so that the zones of energy release are located behind the closing
shock in the secondary transonic region of low intensity. Further increase in the level of supplied energy (curve 4)
leads a destruction of the supersonic zone to form two compression shocks of nearly equal (but lower than in the in-
itial flow) intensity. Notwithstanding the considerable decrease in the wave resistance in the last case, the diagram of
the pressure coefficient obtained can hardly be assumed to be aerodynamically expedient. Furthermore, it is also nec-
essary to take into account the energy expediency of such control.

Thus, the investigations carried out have shown considerable opportunities to control both the local and inte-
gral characteristics of the airfoils in transonic modes of flow with the use of pulse periodic volume energy supply. We
have established the periodic character of flow formed in such a method of energy supply, which can enable one to
employ it in cruising modes of flight; examples of both the global and local transformation of the flow have been
given. The developed procedure of modeling of transonic flow with energy supply and the results obtained are also
promising for investigations of the influence of the location of energy sources and their dimensions, shape, and inten-
sity and of the frequency of energy supply on the aerodynamic characteristics of flow about lifting airfoils. The pos-
sibility of designing transonic airfoils possessing the maximum cruising Mach number with observance of the
geometric and gasdynamic limitations and preservation of a prescribed lifting force under energy-supply conditions is
offered.

This work was carried out with financial support from integration project No. 27 (2003) of the Siberian
Branch of the Russian Academy of Sciences.

NOTATION

a, dimensionless velocity of sound, referred to a0; a0, velocity of sound in the incoming flow; Cp, pressure
coefficient; Cx, coefficient of resistance of the airfoil; e, total energy of a unit volume of the gas, referred to ρ0a0

2; L,
length of the airfoil chord; Lx and Ly, dimensions of the computational region Ω in x and y, referred to L; M0, Mach
number of the incoming flow; Nx and Ny, number of computational nodes in x and y; p, pressure referred to ρ0a0

2;
p0, pressure in the incoming flow; q, power supplied to a unit volume of the gas and normalized to ρ0a0

3/L; t, time
referred to L/a0; u and v, velocity-vector components referred to a0; F, G, Q, and U, vectors in the standard repre-
sentation of the gas-dynamics equations; x and y, Cartesian coordinates directed respectively along and across the air-
foil chord and referred to L; ∆Cx, error of computation of the coefficient of resistance of the airfoil; ∆E, dimensionless

Fig. 3. Distribution of the pressure coefficients along the contour of the airfoil.

Fig. 4. Pressure distribution in the vicinity of the compression shock in the
case of energy supply.
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total energy supplied over a period; δ(t), pulse Dirac function; ∆t, period of energy supply; ∆p, pressure increase cor-
responding to the energy supply; ∆S, area of the zone of energy supply, normalized to L2; γ, adiabatic exponent; ρ,
density referred to ρ0; ρ0 is determined from the condition p0 = ρ0a2; Ω, doubly connected computational region. Sub-
scripts: i, index of summation; x, direction along the coordinate x; y, direction along the coordinate y; 0, incoming
flow.
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